写一部带有专业理论色彩的数论史书,是一个浩大的工程,非朝夕之功。
沈奇有灵感就写几个字,他不着急,慢工出细活。
又到了周三的咖啡时间。
沈奇在数学系三楼咖啡厅和几位博士研究生聊天。
“乔纳斯,从去年九月到现在二月份,我第一次在咖啡厅见到你,要知道我从没缺席过任何一次周三咖啡时间。”沈奇说到。
乔纳斯也是一位博士研究生,今年是他呆在普林斯顿的第九个年头。
一年多前,沈奇来普大读研究生时,乔纳斯是博士研究生。
极有可能在几个月之后沈奇拿到phd,乔纳斯还是博士研究生。
“我有资格来喝咖啡,不是吗?”乔纳斯笑道。
“当然。”沈奇点点头,又问另一位博士研究生:“克里斯,你研究的课题进度怎样?”
克里斯戴着眼镜,他非常神秘而且特别认真的说到:“哥德巴赫猜想1+1问题即将被我解决。”
“哦,是吗?”沈奇将信将疑,如果克里斯所言不假,那么这将是一个震惊数学界的爆炸性新闻。
“你呢,塞巴斯蒂安,你在研究什么课题?”沈奇问一位头发很卷的博士研究生。
塞巴斯蒂安淡淡一笑:“我想我已经找到了一个通解,对任何紧的、单的规范群,这个解满足四维欧氏空间中的杨—米尔斯方程组。”
“你太了不起了,塞巴斯蒂安。”沈奇虽然口头恭维塞巴斯蒂安,但内心中存疑。
找到这个通解,意味着从数学上完全解释了困扰人类科学家几十年的千禧难题之一:杨—米尔斯方程组。
今天是什么好日子,克里斯宣称他即将解决哥猜1+1,塞巴斯蒂安说他已经解决了杨—米方程组。
这俩博士研究生究竟是才华盖世,还是牛逼吹上了天?
需要进一步验证。
沈奇还是有点紧张的,如果哥猜和杨—米方程组真的被克里斯、塞巴斯蒂安这两个韬光养晦好几年的家伙搞定了,那么他俩将成为当今最耀眼的学术明星。
逼的数量是有限的,人家多装一个逼,自己就将少装一个逼。
沈奇询问到:“塞巴斯蒂安,可以展示一下杨—米方程组的通解吗?当然,你有权不这么做,如果你的研究成果尚未发表的话。”
“我很乐意这么做。”塞巴斯蒂安端着咖啡杯起身,拿粉笔在黑板上写了起来。
普大数学系咖啡厅跟外面那些妖艳咖啡厅不一样,这里的墙壁上挂着若干块黑板,客人们若是来了灵感,可以在黑板上即兴发挥。