除了复数这种流通于纸面及学术研究的虚虚实实存在,其他几个数系每天都被普通百姓所运用,数学看似缥缈高深,实则是社会市井里运用最广泛的一门基础学科。
数学可以用来买菜算账炒股理财,也可作为唯一语言和上帝交流窥探浩瀚宇宙,它高高在上,它遍布市井。
基于纯粹数系的证明运算是血统纯正的代数,虽然大多数的数学家更偏爱几何,但代数依旧有它的重要地位。
p(x+iy)的复根是什么?
它来自哪里,又要去往何处。
沈奇自学的第一本大学教材就是高代,他喜欢柯西,同时也很头疼柯西。
不管在哪个国家公布的历史伟大数学家排名榜中,柯西绝对能占据一席之地,他绝逼是15级参考模板,只不过系统抽样的是高斯。
沈奇之所以喜欢柯西,因为柯西以一己之力推动了代数向前发展,他对代数做出的贡献无与伦比。
国决下半场第一题,必然要用到柯西定理。
沈奇很快找到了两个根之差的乘积,代数语言称为判别式,它是一柄利刃,多项式和导数的线性组合在它面前不堪一击,溃不成军。
p(x+iy)就是个胆小的懦夫,它躲在x的多项式身后猥琐不出,依靠“判别式不为0”这座防御塔消磨沈奇的兵线。
“呵呵,你个渣渣以为我不敢越塔杀人?呵呵,你太天真了,p(x+iy)。”
沈奇大刀阔斧放出大招,他顶着护盾“达朗贝尔法则”配合柯西定理,强行冲进“判别式不为0”的防御塔下,非常狂野的将p(x+iy)撕裂为u(x,y)+iv(x,y),干净利落,全身而退。
在沈奇强大凌厉的攻势下,p(x+iy)瞬间失去抵抗力,它老老实实交出自己的菊花:a+bi。
国决下半场第一题,破之。
得理就当不饶人,数竞赛场上绝对不能心软。
代数之后必是几何。
第二题是解析几何题,跟昨天的考题顺序类似。
高中阶段的平面解析几何是坐标几何的基础部分,坐标系中的图案看上去如波纹似蝴蝶,对称有对称的和谐,不对称有不对称的律动美感。
看上去越是简约的姑娘,得到她征服她的难度往往越高,因为她给出的条件苛刻。
沈奇在此处整整思考了一个小时,他可以画出蚌线、割圆曲线乃至蔓叶线,坐标系中的每一种曲线代表一种含义,对应一个答案。
沈奇必须尽快穿过坐标迷雾,捕捉到那条最优美最正确的窈窕曲线。
“是的,没错,对数螺线。”
沈奇终于动笔了,他邂逅了logp=aθ,一条像海螺又像蜗牛的曲线,她转啊转啊,一圈一圈最终通过x轴与y轴的交界点o。
美丽的皮囊千千万万,最终的归宿只有一个,坐标系中的美丽姑娘们——曲线,即便她们再苛刻,也终将通过原点,回归朴实无华的初心。
“搞掂!”
时间过去了两个半小时,沈奇完成了国决下半场前两题的解答,算上昨天的三题,他总计完成五题。
“呼……”沈奇深呼吸一口,稍作休息,几个月之前他不敢想象,自己有机会参加全中国最顶级的高中生数学竞赛,成为top60之一。哦不不,晕倒退赛了一个,是top59之一。
此刻,只差最后一小步,沈奇或许就将触碰到人生中的第一枚金牌,全国级别的数学金牌。